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Abstract

Estimation of the state variables of nonlinear systems is one of the fundamental and significant problems in control and

signal processing. A new extended Kalman filtering approach for a class of nonlinear discrete-time systems in engineering is presented in
this paper. In contrast to the celebrated extended Kalman filter (EKF), there is no linearization operation in the design procedure of the
filter, and the parameters of the filter are obtained through minimizing a proper upper bound of the mean-square estimation error. Simula-

tion results show that this filter can provide higher estimation precision than that provided by the EKF.
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Estimation of the state variables of a dynamic
system through noisy measurements is one of the fun-
damental and significant problems in control and sig-
nal processing, and significant progress has been
made in this area. In the 1940s, Wiener N., the
founder of the modern statistical estimation theory,
established Wiener filtering theory which solves the
minimum variance estimation problem for stationary
random processes. It was not until the late 1950s and
early 1960s that Kalman filtering theory, a novel re-
cursive filtering algorithm, was developed. It did not
require the stationarity assumption, and has been
widely used in many areas, such as aerospace and me-
chanical engineering. However, the Kalman filter is
only applicable to linear systems. Since almost all the
practical dynamic systems are nonlinear, Bucy and
some other researchers were engaged in extending
Kalman filtering theory to nonlinear systems in the
following 10 years, and the most celebrated and
widely used nonlinear filtering algorithm is the ex-
tended Kalman filter (EKF)!'), which is a subopti-
mal nonlinear filter. The key idea of the EKF is using
the linearized dynamic model to calculate the covari-
ance and gain matrices of the filter, thus the nonlin-
earity of the dynamic systems is stronger, the estima-
tion precision provided by the EKF is worse. In the
late 1990s, motivatied by the deficiencies of the
EKF, Julier presented a new nonlinear filter named
unscented Kalman filter (UKF) based on his work

X 1
about the unscented transformation (UT)D'L.

Though the UKF avoids the linearization operation,
and can provide higher estimation precision than that
of the EKF, selecting and propagating the sigma
points will increase the computational cost in some
cases. In the past few years, significant progress has
been made in the robust Kalman filtering theory, and
the key idea of robust Kalman filters is guaranteeing
filtering precision through minimizing a proper upper

[4_10], and

bound of the mean-square estimation error
this idea is also very constructive to the development

of nonlinear filtering.

In this paper, we consider the state estimation
problem of a class of nonlinear discrete-time systems
whose state equation is nonlinear and measurement e-
quation is linear. Based on the proper introduction of
some assumptions and lemmas, a new extended
Kalman filter (NEKF) is presented through minimiz-
ing an upper bound of the state mean square estima-
tion error. A numerical simulation shows that the es-
timation precision provided by the NEKF is higher

than that provided by the EKF.

1 Problem formulation

Consider the following nonlinear system defined
on k=0,1,-"-,N—-1;
X = Ak T Bw, + fi(x), (1la)

» Supported by the Key Project of Chinese Minustry of Education (Grant No. 104007)
*» To whom correspondence should he addressed. E-mail: yz-dpi® tsinghua. edu. cn



Progress in Natural Science Vol.16 No.9 2006 www. tandf. co. uk/journals 913

Yo = Cxp + Dy, (1b)
where x, € R" is the state vector, y, € R is the mea-
surement output, w, & R” is the process noise, v, €

R? is the measurement noise. A,, B,, C,, D, are

known matrices with proper dimensions, and f,(*):

R"—R" is a given nonlinear function satisfying the
following Assumption 1.

Assumption 1.
(1) £.(0) =0, (2)

(ii) There exists a matrix sequence M, €R" ™",
such that ¥ x;, x; €R”
I f.(x3) ~ fo(x3) i< M,(x, — x3) ll,,

(3)

(iii) Y x, € R", there exists a known matrix
P(x,) such that

fi(x) = P(x)x,. (4)

Remark 1. If x, 70, then we can easily con-
struct the matrix P,(x,) satislying Eq. (4). If x,=
0, then since f,(0) =0, we can just let P,(x,)=1.
Note that P,(x,) can be singular.

Moreover, suppose w,, v, and the initial state

x, have the following statistical properties:

W 0
Eqlv, | = |0,
X

0

wl w77 we, O O
E vk v] = O Vlzé\kj O > (5)
0 0 o 0o X,
where E{+ | stands for the mathematical expectation

operator, W,, V,and X represent covariance matri-
ces of the noises and the initial state, and §,, denotes
the Kronecker delta function, which is equal to unity
for £ =j and zero for other cases.

Now, we consider a filter of system (1) in the
following form

£.0= Agk, + K (y, - Cx) + f,(2,), (6)
where £ =0,1, -, N =1, %, € R" is the estimation
value of the state, A, and K, are the filter parame-
ters to be determined, and suppose £, = O. From
Eq. (4), we can see that ¥ £, € R”, there exists a

known matrix P,(£,) € R” *" such that

f.(2,) = P(2)%,. (7

Moreover, the assumption of the relationship be-
tween P, = P,(x,) and P, = P(%,) is given as fol-

lows.
Assumption 2.

The relationship between P, and i’k satisfies
p, - P, = HF,E,, (8)
where H, and E, are known matrices with proper di-
mensions, and F, € R”™’ is a norm-bounded matrix
satisfying
FF, <I. (9)

In the following, we shall derive the state-space
model of the augmented system composed of the state
equation (1a) and the nonlinear filter (6). Define a

X = [ﬂ, (10)

%,

new state vector as

and the state-space model of the augmented system
can be represented as

X = Ak, + Bw, + £, (11)

- [KAk o }
A = #Cr Ay — K G, ’
_ l:Bk 0 }

Bk B O Kaka ’
o= () =[]
wk - |:vk ’ f}z - fk(xk) .

Suppose the covariance matrix of the augmented

where

system 1is
T

E, =Elxx,]= E{[::M:j } (12)
Then we have
Zea=El(Ax, + f)(Ax, + )]+ B,W.B,

= (A, + P, + HFE,)
- Z,(A, + P, + HFE)"
+ BWB,, (13)

where

~ H ~
Hk = [Ok:|, Ek = [Ele O]’

~ [W,z 0} 5 [Pk 0}
W’Z“ovk’ L Llo By

and P, = P,(%,) satisfies f(%,)=P.2,.
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In the following, we shall design a {inite-horizon
filter for structure (6), such that for all allowed un-
certainties, there exists a sequence of positive definite

matrices X, satisfying

(r -r11xlr -11"

= El(x, — £)(x, - £) 1< Z,. (14)
Because
tr{E{(x, - £)(x, — 20" 1

= El(x, - £ (x, - 2)] < (Zy),
(15)
we shall minimize tr(X,) and obtain an optimized fil-
ter eventually. Note that tr(+) stands for the trace
operator of a matrix.

2 Design of the filter

For the sake of the following discussion, two
useful lemmas are introduced first.

Lemma 1.!7) Given matrices A, H, E and F

with compatible dimensions such that F'F<I, let
X be a symmetrical positive-definite matrix and a >

be an arbitrary positive constant such that a I
EXE'>0. Then the following equality holds:
(A + HFE)X(A + HFE)"
< AXA' + AXE(«"'I - EXE") 'EXA"
+ao 'HH'. (16)

Lemma 2."% Let f,(+): R"""—>R""", 0<# <
N be a sequence of matrix functions so that f,(A) =
fi(A), VA=AT>0, and f,(B)=f,(A), VB
=B '>A=A">0hold. Let g,(*): R" ">R" ",
0< k<N be a sequence of matrix functions so that
g, (A)=g/(A)=f(A), YA=A">0. Thus the
solution of the following difference equation
A = filA), By = g (B,),
A, = B, >0,
PAL fgcpeny and 1Bt o (0XEIN) satisfies
A, <B,.

Based on these two lemmas, we give the follow-
ing theorem.

Theorem 1. If there exists a symmetrical positive
definite matrix sequence X, and a positive scalar se-

quence a, (0=Ck=<CN), such that
a;'I - EXE, >0,
o1
L =AZA,

(17)

+ AEE (a;T-EZEE)'EZA]

+a, HH, + BW,B], (18)
- X O
X, =X =[ 0 } (19
0 0 o o )
then
2. <X, (20)

where X, satisfies Eq. (13).

Proof. If the matrix inequality (17) holds, then

from Lemma 1, we havi R
L= (A + P+ HFE,)
CE,(A, + P, + BEE) + BB
<AZA, +AZE,
(o, T-EZE) 'EEA;
T 4 BB

Moreover, since

- X, O
z,=Z, = [00 0]

then from Lemma 2, we can obtain that EkQEk,
where X, is defined by Eq. (18).

This completes the proof of Theorem 1.

Suppose
=101 1xzl(1 1), (21)
then we can easily see that
=00 11501 -11"
= E[(x, — £,)(x, — £,)"], (22)
and
w(E,) = El(x, - £,)(x, - 2], (23)

In the following parts of this section, we will
show how the filter parameters A, and K, are se-
lected to minimize tr(Z, ). Theorem 2 will summarize

the approach to designing the filter to minimize tr
(%,).

Theorem 2. For a given positive scalar sequence
a,, inequality (17) holds. Then if
Ay =A + (A + i)k - K,C,)

- Z,E,(a,'I - EEE,) 'E, (24)
and
K, = (4, + P)s,CilCs,.Ccl+ DvDI,
(25)
then
T X,
5 - [zu zz,j’ (n € 10,N1), (26)
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and tr (X,) is minimal, where
S, = EZ,+Z,E,(a;' 1 - EZE,)EZ,.
(27)

Moreover, the covariance matrices of the state
and estimation error satisfy

) a= (A, +POE, (A, + i)k)T
+ o, HH, + BWB, + (A, + P,)
' E1,kEZ(a1:11 - EkELkEI)A
CEZ, (A, + P,

5,..= (A, +P)S, (A, +P)"
+ BW,B, + a; HH, - (A, + P,)
-sciescr+pyv.p. 1!
- CS, (A, + P,
and X, = X,= X,.

(28)

(29)

Proof. It is clear that if » =0, then Eq. (26)

holds, i.e.
- l5 o
X, o ol

Zio
o = [22,0

Suppose Eq. (26) holds when » =& . In the fol-
lowing, we shall prove that Eq. (26) still holds when
n=#k+1. From Eq. (18), we have

El,lz+1 Elz,lzﬂ
T = = ’
2,k+1
where

E1T2,k+1

Zn= (At POE (A + P’
+ a;'HH, + BW,B, + (A, + P,)
: zl,kE;r(agll - Ekzl,kEf)vl
CEZ, (A + P,
(4, + Plz)zl,lzCIK:k
+ (A, + Pk)zl,kE{(G;II - Ekzl,lez)ﬂ
“EZX, CKy+ (A, +P)
c Xy Ay + P, - KuCy)'
+aH H, K, + (A, +P)E,,
‘ EI(G;II - Elzzl,kE{)ilEkEZ,k
X (A + Py — KuCO',
Ty et = K, CEC K, + K,D,V,D K

+ (A, +P)E, (A, +P)"

+ (A, + P)E, , + K.0Z,]

) EI("‘IZII - Ekzl.kEI)ilEk

X [(Ay + P)E, , + KuCE, 1"

(30)

(31)

E12,k+1:

(32)

(33)

From Egs. (31)—(33), we have
Elz+1: (1 - 1]%,,[I -17"
= (A, + P, - K,C)Z,(A, + P, - K,C,)"
+ (A, —ADE, (A, - A"
+[(Ag + POE, , + K,CF,
(A, + PPE,]
X Er(a,' T — EX, ,E;) 'E,
X [(Ag + PE, , + K, CF,
(A, +P)E, 1"+ o' HH]

+ K,V,K. + BW,B,. (34)

Moreover, we have
1 otr( &)
2 oA,
= (Auk - Alz)

[I+ %, Ei(a;'T-EZ E) 'E,]

- (A, + Pk - K,Cy)
- TEN(a,'T - EZ, E}) 'E,, (35)

1 aztr(Ekﬂ)
2 aaA}

=1+ %, ,E (a;'T - EE E)E, >0,

(36)
1 otr( X, 1)
2 oK,
= K,[CS,Cl+ D,V,D}] - (A, + P)S,Cy,
(37)
1 82tr(2k+1)
2 KL
= CS8,CT + DV, D, >0. (38)
atr(XZ,.,)
From Eqs. (35)—(38), if E+12 = 0 and
oA,
otr(X,,,) — .
—8K:1+1 =0, then tr(X,, ) is minimal.
otr( X
From M = 0, we have

OA,,
Ay= A, + (A, + P, - K,C))
- EkEI(“;II - Ekzl.kEZ)_lEk
x [1+ X, ,Ef(a,'T- EE E)DE]".
(39)

Moreover, from the matrix inverse lemma, we

have
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(a;'1 - E,X, E})'E,
0 Ez.kEf(aZlI - Ekzl.kE’I{)ilEk]il
= [(a;'I - Ekzl.kEkT) + Elzz?_,kE'}f]ilEk
= (a,'T- EZE})'E,. (40)

Substituting (40) into (39), A, can be repre-

sented in a more concise form:
A,= A, +(A + i)k - Kuka)

- ZE.(a;'T-EXE})"E,. (41)
otr(X,, )
From oK, = 0, we have
A T T Tq-1
K, = (A, +P)SCILCSC, +DVD,] .
(42)
Let
M,, =1+ El.kEz(O’/;lI - Ekzl,kElzr)ilEk’
and
T, -1 Ty-1
M, =1T+Z,,E,(a,1 - EX E,) E.

From Eq. (40), we can derive that
S,= X, + 5,E (a;'1 - EZE;) 'EZ,
(I+ZE(a;'T-EZX E)) "EMIZ,
1+ (M, - Mz,k)Mg.lk]Ek
- Ml,kM;.lkEk'

Substituting Egs. (41), (42) and (43) into
Egs. (32) and (33) respectively, we have

I

(43)

. Ty T
L= (A +POM, B CK,
+ (A + POME, (A, — KnlzCk)T
= (A, + P)s,c,lcs,cl +pvpi]!
-GS, (A, + P)T
+ AM, M, 2, M| AL (44)
and
B < T, T
2~ K,CXCK,

+(Ay + POE, (A, + P)"
+ KD VDK,
+ (A, + i’k)zz,k + K,CZy |
X EZ‘("?I - Ekzl.}cEz)%
“E (A, +P)E, , + K, CZ,]"
= (A, + P)S,c,lcscr + DD
- CS, (A, +P)T

+ Ale,kMzi,lkzz,leT,kAz.~ (45)

S,

Thus, from (44) and (45), we have
b - [zl,kﬂ 22,k+1}
Bt Ez,ku 22,k+1 .

Moreover, substituting Eqs. (41), (42) and
(43) into Eq. (31), we have Eq. (28), and substi-
tuting Egs. (28), (44) and (45) into Eq. (34), we
can finally obtain that the covariance matrix of the es-
= x, — %, satisfies Eq. (29). This

completes the proof of Theorem 2.

timation error e,

If the positive scalar sequence e, is given, then
the optimal filter is determined by Egs. (24) and
(25). Since a, is also a parameter of the filter, how
to choose @,?7 The following theorem will solve the

problem.

Theorem 3. If Eq. (17) holds, then «, can be
obtained from the following convex optimization
problem

min tr( X )
t.

[X - (A, + P))S, (A, + P)T

(46)

N BkaB;zr N alleleHZ:l (A, + i’k)SkCZ
CS. (A, +P)T CS,C; +DV,D}
=0, (47)
X=X, 0<a<IEZ EI"

Proof. It is clear that a, can be obtained from
the following convex optimization problem.
min tr( X)
s.t. X=%,, X=X,
0<a,<lEZ E I
By the use of Shur complement, X=X, , | is equiva-
lent to Eq. (47). Thus Theorem 3 has been proved.

Now, we summarize the novel extended Kalman
filtering algorithm as follows:
Lo = Agty + Ky (y, — Cg,) + f,(2,),
Ay = A, + (A, +P, - K,C)
' EkEkT(“;]I - E;kEZ)ilEk’
K, = (A, + P)S,CCSC + DD, 1",
S, = Z, +5E,(a;'I - EZ,E}) 'ES,,
T =(A, + P)S, (A, +P)T
+BWB, +a,'H, H,
- (A, + P)S,clcsc, +DVD]!
cCS (A, + P,
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where £, = X, a, is determined by Theorem 3, and
P, =P, (z,) satisfies f(2,)=P.%,.

3 A numerical simulation

In order to evaluate the performance of the sub-
optimal filter presented in the former part of this pa-
per, a numerical simulation is given as follows. Con-
sider the following nonlinear discrete-time system:

G = [0.101 - (1).5]xk + [—06 (ﬂwk

J ( )?5
l X, | s
+ A 2
(1x,, )3
y, = [—100 10]x, + [0 1]v,
(48)
where A >0 is a positive scalar. Let
W, = 0.011,, V, =0.01I,, X, =0.01I,,
H, =0.11,, E, = [(0.5)* +0.5]I,,

and X = [10 lO]T, E€[0, N]. It is clear that we
can choose Pk(xk) such that

P (1))
i 2
(12,13 0
2%,
2 £,,7#0,%, , 70
0 (1 2,,1)3
L 2%
_ . -
(L, 03 0
2%,
=4 2 £,,70,%,,=0
(1 £,,1)3 0
2%, 4 i
_ 21
(12,,1)3
2%, ,
2 £1,0=0,%,, 70
(1 £,,1)3
L 28,4
12 X‘l_k :O,xzvk :0.

Define the mean square estimation error of the

kth step as
k

MSE, =+ (x, - £)7(x; — £). (50)
=0

The estimation values of the system state using

the NEKF and the EKF with A =0.1 are illustrated
in Fig. 1. The mean-square errors during the estima-
tion procedure and the values of «, are illustrated in
Fig. 2. The estimation values of the system state us-
ing the NEKF and the EKF A =0.5 are illustrated in
Fig. 3, and the mean-square errors during the esti-
mation procedure and the values of a, are illustrated

in Fig. 4.

By —NEKF
10 oM = EKF
5 ~-Real values

010 20 30 20 350 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100
k/ step

Fig. 1. State estimation values with A =0.1.

3007
A — NEKF
250} ¢ '.' -- EKF

[
<
<

Mean Square Estimation Value
wn I
[ [

1020 30 40 50 60 70 80 90 100
k/ step

(a)

(=

0.6
0.5
04
¥
O'3W
0.2
0.11

0 10 20 30 40 50 60 70 80 90 100
&/ step

(b)
Fig. 2. Mean-square error with A =0.1 (a) and the values of a,
with A=0.1 (b).
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=20 N L . M T . L i
0 10 20 30 40 50 60 70 80 90 100
ol -
20F -
TN Real Values

k/ step

Fig. 3. State estimation values with A =0.35.

g %00 —NEKF
-~ EKF

2 so0} “

£

g

£

W

:

g

72}

8

[

=

0 10 20 30 40 30 60 70 80 90100
k/ step
0.50, @
045
0.40
0.35
030
N o.zst
0.20
0.15H

0.10F
0.05}

0 10 20 30 40 S0 60 70 80 90 100
k/step
(b)
Fig. 4. Mean-square error with A =0.5 (a) and the values of a,
with A =0.5 (b).

From the simulation results, we can see that the
estimation precision of the NEKF is higher than that
of the EKF, and from Figs. 1 and 3, we can easily
see that the nonlinearity in the dynamic model is
stronger, and the difference between the estimation
precisions of the two filters is bigger, mainly because
the parameters of the filter are calculated using the o-
riginal nonlinear dynamic model in the design proce-

dure of the NEKF. Thus, when the nonlinearity of a
system is strong, we had better choose the NEKF to
estimate the state of the system, and the simulation
results show that the novel extended Kalman filter is
feasible.

4 Conclusion

A novel extended Kalman filtering approach for a
class of nonlinear discrete-time systems with nonlinear
state equation and linear measurement equation has
been presented in this paper. Because the design pro-
cedure of the new suboptimal nonlinear filter avoids
linearization operation, the estimation precision pro-
vided by this new filter is higher than that provided
by the celebrated EKF especially when the nonlineari-
ty of dynamical systems is stronger. Simulation re-
sults show the effectiveness of the suboptimal filter.
Furthermore, the filtering approach can be utilized in
areas such as navigation and attitude determination of
spacecrafts.
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